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1. INTRODUCTION

Multi-echelon inventory theory has been of interest over the last
two decades, both for the theoretical problems it poses and for its
realism in describing operating systems. After a relatively dormant
period in the late 1960's and early 1970's, a resurgence of interest
occurred. Most of the recent work in multi-echelon systems is keyed to
a model called METRIC that was developed at the Rand Corporation for the
U.S. Air Force. This model involves finding optimal spares levels at
various locations in a two-echelon system, where lateral bases are sup~
ported by a single depot. More detail is provided in the sections that
follow.

Of interest here is the study of the trade-off possible among

spares levels and repair capacities, as well as a more realistic model
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T-446

than is presently available of the underlying stochastic process that
‘describes components which randomly fail and require repair.

The general problem to be investigated is the determination of
the optimal spares levels and repair capacities in a reparable item
multi~echelon system in which a finite number of items is desired to be
operational at any given time, and in which queueing may occur at the
repair facilities when all channels--finite in number--are busy.

Before presenting the details of the model developed here, we
first trace the historical development of inventory theory, with partic-
ular emphasis on multi-echelon efforts, and summarize the previous work

in repairable item, multi-echelon inventory control.

2. HISTORICAL PERSPECTIVE

Inventory theory is said to have begun with the development by
Ford Harris in 1915 of the Economic Order Quantity (EOQ) model [see
HARRIS (1915)]. The same model was independently developed by R. H.
Wilson at about the same time, and the model is sometimes referred to as
the Wilson Lot Size Formula. This simple deterministic model still
serves today as one of the cornerstones of applied inventory control.

In the 1950's and 1960's, interest in stochastic inventory con-
trol grew after the publication of the landmark paper by ARROW, HARRIS,
and MARSCHAK (1951). A great deal of more "sophisticated" mathematical
work then appeared, concerned mainly with proving that (s,S) types of
control policies are optimal under a wide range of conditions [see, for
example, ARROW, KARLIN, and SCARF (1958)]. Most of this work had to do
with periodic review policies, that 18, policies with the decision rule:

"When it is time to review inventory, if the inventory position (on hand

-2~
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plus on order minus backorders) is below s , place an order to bring
the inventory position level up to S ." Only a few of the studies dur-
ing that time were concerned with how actually to find optimal values of
the three decision variables "s," "S,"” and "time between reviews."

In 1959, GALLIHER, MORSE, and SIMOND considered continuous review
(s,S) policies, whose decision rule is: "Continuously monitor the inven-
tory position. When it falls to a level s , place an order Q which
will bring the inventory position level to S (Q = S-s) ." These are
also known as (r,Q) models [see HADLEY and WHITIN (1963)].

While there was interest in multi~echelon inventory models during
the late 1950's and early 1960's [see, for example, CLARK (1958, 1960)
and CLARK and SCARF (1960, 1962)], it was not until the 1970's that
computers were able to handle the difficult task of solving problems of
this magnitude. PINKUS (1971) extended the work of Clark and Scarf and
designed a truly multi-echelon, multi-product periodic review model for
consumable items, and showed that "real" solutions could be obtained.

The classic paper by FEENEY and SHERBROOKE (1966) appeared during

this same period, and ultimately became the basis of the most popular

multi-echelon reparable item model of today [see SHERBROOKE (1968)].
For reparable item control, a realistic model is a special case of the
continuous review (s,S) policy, where s = S-1 . This is also known as

a one-for-one ordering policy, and is sometimes used in consumable item

P P

inventory control for items that are expensive, critically important,
and infrequently demanded. It is a natural model for reparable item
situations in that when an item fails, it is generally dispatched

immediately to a repair facility and a spare, if available, is "plugged

l
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in." Repairing the item is analogous to ordering a new consumable item
from an outside supplier with the repair time playing the same role as
the replenishment leadtime.

The METRIC model of Sherbrooke "multi-echelonized" the basic
(S-1,5) model of Feeney and Sherbrooke by allowing a certain fraction of
the items to be repaired at the base and the remainder to be sent to a
repair depot. The decision variables were the levels of spares (the
S's) to be stocked in the field, i.e., at each of the bases, and at the
depot. MUCKSTADT (1973) generalized METRIC to allow for a hferaxchical,
or indentured, parts structure; the resulting model was called MODMETRIC.

A key assumption of these METRIC models is commonly known as the
ample service agsumption. This means that repair capacity is infinite,
i.e., that there is never any queueing of items waiting for a repair
channel. This has the effect of causing successive replenishment lead-
times to be statistically independent and allows the invocation of a pow-

erful theorem from queueing theory--Palm's theorem [see PALM (1938)].

Palm's theorem states that as long as there is ample service (Poisson or
compound Poisson infinite calling population failure processes must be
assumed as well), it is necessary to know only the mean turn-around time

of failed items, and furthermore, that the steady-state probability dis-~

Py

tribution of the number of units in resupply is Poisson, with parameter

equal to the mean number of failures during an average resupply time--in

a -

inventory jargon, the mean demand over the leadtime.
Other existing multi-echelon repairable item models based on this

ample service assumption are ACCLOGTROM [see FORRY (1979)]), SIMPLE SIMON

B e L -mm%wW‘
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[see KRUSE and KAPLAN (1973)], and TWOPT [see KAPLAN (1980)]. These
models differ from each other in their respective "bells and whistles."
For example, SIMPLE SIMON allows some old items to be discarded and re-
placed by purchases, ACCLOGTROM allows for the modeling of reliability
networks; that is, components may be arranged in combinations of paral-
lel, series, and k-out-of-n "circuits." Some of the models [METRIC,
MODMETRIC, SESAME (see Kaplan, op. cit.), ACCLOGTROM] also consider
finding optimal values of the decision variables, and their mathematical

optimization techniques are somewhat dissimilar.

3. SUMMARY OF PREVIOUS WORK
The previous models that have the most direct bearing on our
research are the ACCLOGTROM, METRIC/MODMETRIC, SESAME, SIMPLE SIMON, and
TWOPT models. SIMPLE SIMON and TWOPT are stochastic process models
only; that is, they give the steady state probabilities of the numbers
of units in resupply. METRIC/MODMETRIC and ACCLOGTROM, in addition to
modeling the stochastic process, have methodology for finding the opti-~
mal spares levels. SESAME basically concentrates on finding optimal
spares levels and can use METRIC, TWOPT, ACCLOGTROM, or SIMPLE SIMON for
modeling the stochastic process. There are three basic limitations to
the preceding models:
* The stochastic process modeling is based on
(1) infinite source (calling population), and
(11) ample service (infinite number of repair channels)
assumptions,
* Because of the ample service assumption, the only decision

variables in these models are spares levels, and thus no

-5 -
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trade-off considerations are possible among levels of spares
and repair capacities,
Recent work by GRAVES and KEILSON (1979) comsiders a single ochelon svs-
tem allowing for a general birth-death stochastic process model, and in-
troduces a new set of performance measures dealing with times for the
system to recover after "failing" and times to "failure" when operating
satisfactorily. While alluding to system design ramifications, no ex-

plicit optimization problem is formulated.

4. PROBLEM STATEMENT
The system we study here consists of a single base (or group of
bases) with a single base (or field) repair facility and a single depot

repair facility. The problem can be stated mathematically as

Miijmize Z= kyy + chB + kDCD 1)
y, B’CD
Mty
subject to J Py24A, (2)
n=M
where
p_ = steady-state probability that n units are operational,

M = number of components desired to be operating (operating
population size),

A = minimum percentage of time all M components are to be
operational (availabllity),

y = number of spare components to '"stock",

¢, = base repair capacity in number of channels,

¢, = depot repair capacity in number of channels.

k, = cost per unit (i=y,D,B) including annual operating costs and

capi ‘al investment amortization of a spare or a repair channel.

] -6 -
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The variables vy, Cgs and ¢y are decision variables to be deter-
mined by an optimization algorithm. The steady-state probabilities, Py
must he determined through a stochastic process analysis. We use closed

network queucing theory for the latter and implicit enumeration for the

former.

5. STOCHASTIC PROCESS MODEL
The stochastic process can be viewed as a network and is shown

schematically in Figure 1,

Node U. Node B
M Operiiing Base Repair
N U | a cp Channels | 1-8
— ! Vg
y spares

B 1-u
8
Node D

Depot Repair
¢, Channels

D
"p

-

Figure 1.,--Network for a two-echelon repairable
item system.

The network has three nodes, which we refer to as U ("up" or
operating), B (base repair facility), and D (depot repair facility).
Additional parameters o and £ are shown, where o is the fraction
of failed items that are diagnosed as base repairable and sent directly

to hase repair (l-a 1is the fraction sent directly to depot repair). Of

-7-
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those that are sent to base repair, a further fraction £ , after under-
going service, cannot be fixed and are sent to depot repair.

Holding times at all nodes are assumed to be independent exponen-
tially distributed random variables. At node U, the holding time is the
time to failure of a component, with the mean failure rate denoted by
Hy (often in queueing and reliability literature, this is denoted by
A ). At nodes B and D, the holding times are repair times and the mean
repair rates are denoted by Up and Hp » respectively.

Since all holding times are exponential, we have a special case
of a Jacksonian network [see JACKSON (1957, 1963)]; this special case is
a closed queueing network where no items ever leave or enter the system,
but circulate within the network only. Jackson (op. cit.) showed for
general queueing networks with exponential holding times (which, because
of his work, are often referred to as Jacksonian networks), and GORDON
and NEWELI. (1967) showed for the closed network case that the joint
probability distribution of the number of customers at each node of the
network is of product form., For closed networks, using the notation of
BUZEN (1973), this means that for a k node network with a total of N

units,

1 K %y
p(nl,nz,...,nk) "M 121 (xi) / Ai(ni) , (3)
where p(nl,nz,...,nk) is the joint steady state probability that n1

components are at node 1, n, at node 2, ..., n at node k . The

x;, are the real positive solutions to the system of equations

k
byxy = 121 LA T R %)
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and
n! sy N < ¢y
Ai(n) = n-e, (5)
r Ci!Ci N n z Ci
c1 = number of parallel channels at node 1,
| pij = Pr{unit goes to node j ] service completed at node i} .

The Xy in equation (3) play the role of A/u in a standard M/M/c
model, and thus the nodes act as independent M/M/c queues with 1/G(N)
the normalizing constant (taking the place of the po's ).

For our system, there are only three nodes ({ = U,B,D) and
¢y = M , the desired number of components operating. The queue at this
node represents the level of spares inventory. When servers at node U
are idle, a spares backorder situation is in effect and the population

is at a degraded strength (fewer than M components operating).

The matrix giving the pij's for our problem is

U 0 a 1-a
P = {pij} =B|1-8 O ]
D 1 0 0

Using these pij's in equation (4) yields

HyXy = upxg(1-B) + upx,

Mg T My (6)
HpXp = quU(l-a) + upxgB .

The solution to the system of equations (6) is, arbitrarily set-

ting xg = 1 since one equation of the set (4) is always redundant,
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Hg (1-o+aB)uy
= — xtl, B —mmee——— .
*u uUa ’ B *p olp
Thus,
n n

U D
p(n n,,0n ) = 1 IJB 1 . 1 [} [(l~a+(16) pF] . 1
U* 'B*D G(N)\guu AU(nU) AB(nB) apy AD(nD)
where the A's are given by equation (5), namely,

n! , N <b

A(n) = { neb .

nib , n>b

where b = M, Cp» and respectively. Buzen's algorithm is used to

CD,
calculate the constant G(N); that is, the value of G(N) so that

g p(ny,ng,ny) = 1,

the sum being taken over the set S , which contains all triplets
(nU,nB,nD) such that n; + L + n, = N . Once the joint probabilities

p(n nB,nD) are obtained, we can calculate the marginal probabilities

U!
an s which are required for the constraint(s), by
Pn = Z p(nU’nB’nD) N
U 1
S
where S1 now is the set of all pairs (nB,nD) such that ng + n, =

N-nU . This can be done efficlently using Buzen's algorithm; in fact, it
results as a by-product when calculating G(N) .
The above probability distribution is a function of the decision

variables vy, Cgs and ¢ The distribution exhibits certain monotonic-

D .
ity properties in relation to these variables; this will play a crucial
role in the optimization part of this study. Thus, before considering

optimization, we verify monotonicity.

- 10 -
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Let Nu represent the number of "up" machines for a stecady-state

network; the distribution of Nu depends on (y.cB,cD) and thus we rep-
| resent the random variable as Nu(y.cB,cD) . We put the usual partial
order on the decision space: (y,cB,cD) < (y',cé,cb) if and only if

y<y', c,<c!,and ¢, < Now consider the idea of stochastic

L
B*CB° p--% ¢ f
N

ordering of random variables: S N' if and only if P(N>n) < P(N'>n)
for all n . We can now state the basic monotonicity property for the

steady-state behavior of the system.

. st
Theorem. If (y,cB,cD) < (y',cé,cﬁ) , then Nu(y,cB,cD) < Nu(y',cé,cé)

The transitivity of the inequalities implies that only three cases
must be considered in proving this theorem: (i) (y,cB,cD) < (y+l,cB,cD) ;

(11) (y,cg,ep) < (y,cptl,cp) 3 and (1i1) (y,eg,cp) < (y,cp,cptl) o

First consider case (1): We must show that the steady-state num-

ber of "up"‘units increases stochastically when the total number of units
is increased by one and the number of repair channels is unchanged. This
is easily seen to be true by modelling the system with M+y+l wunits as

a preemptive priority network with M+y high priority customers and 1 low
priority customer. The distribution of the total number of customers at
each node will be identical to the nonpriority system with M+y+l cus-
tomers. The distribution of the number of high priority customers at

each node will be identical to the nonpriority system with M+y customers,
The one low priority customer will spend part of its time at node "U";
thus, Nu(y+1,cB,cD) st Nu(y,cn,cD) + Lu , where Lu equals the number
of low priority customers at node "U" in steady state. Since L >0

at
it follows that Nu(y+1,cB,cD) 2> Nu(y,cn,cD) .

-11 -
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Now consider case (i1): We must show that the steady-state number
of "up" units increases stochastically when the number of base repair
channels is increased by one and all other parameters are held fixed.
This can be demonstrated by considering the form of the joint distribu-
tion of the number of items at each node, equation (3). Note that this
is the conditional distribution of three independent random variables
given that their sum equals the total number of items in the system. Let
us denote these independent random variables as Zu(M) . ZB(cB) and

ZD(cD) . Then, for example,

&
Pos F?' nZcy
P(ZB(CB) =n) = ¢ x: , N
Pos n-cp cgsm s My
cB!cB

where is the appropriate normalization constant. By the product

PoB
form, equation (3), it follows that

st

N (scgaep) = 2, () | 2 ) + Zg(ep) + 2 (c) = My . (8

It can be shown by a straightforward algebraic analysis using equation

(7) (see Appendix) that
s
z2gleg + 1) ¥ 2 (cp) .
This fact and equation (8) then imply that
t
Nu(YocB"'locD) }, NU(Y'CB'CD) ’
the desired conclusion.

Case (iii) can be verified in exactly the same way as case (ii),

completing the proof. The statement of the theorem gives the desired

-12 -
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monotonicity property of the constraint function in equation (2). We can

now proceed to the optimization.

6. OPTIMIZATION PROCEDURE

The optimization aspect of this study is a formidable one because
an expression for the availability as a function of the decision vari-
ables (the spares level and repair capacities) does not exist in closed
algebraic form. That is, the pn's that appear in the constraint (2)
are determined from the stochastic process model and can only be calcu-

lated numerically when the values of vy, Cps and ¢ are specified.

D
The difficulty just indicated, and the fact that integer values
are required for the decision variables, suggest the use of an implicit
enumeration scheme for the optimization algorithm. One such scheme that
has already been used when closed algebraic expressions were not avail-
able [see SOLAND (1973)] is that of LAWLER and BELL (1966). However, it
requires that the objective and constraint functions each be expressible
as the differvnce of two monotonic functions of the decision variables,
Thus, use of this optimization scheme interacts with the stochastic pro-
cess analysis in that the latter 1s charged with providing the required
monotonicity properties of the model. We have shown in the stochastic
process analysis that the monotonicity conditions hold (the higher
Y> Cps € s the greater the availability). The cost is linear and there-
fore monotone. Thus we can use the Lawler-Bell (L-B) algorithm. Use of
any other optimization algorithm would most likely place similar, or even

more stringent, demands (e.g., convexity) on the stochastic process

analysis.

- 13 -
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An implicit enumeration approach also allows us to consider a
much wider class of decision problems than has heretofore been treated
in connection with multi-echelon inventory models. The optimization al-
gorithms usc: in METRIC, MODMETRIC, and SESAME are each tailored to the
specific form of the problem treated, i.e., a single specific constraint,
either on service level or on budget, and are not easily generalized to
other formulations. Through use of an implicit enumeration approach,
however, we can treat a variety of objective and constraint functions
and allow the use of multiple constraints. For example, we can impose
the additional constraint of a lower limit on the average number of op-
erating units:

M-1

Mby
! np, +M ] p 2B,

ny=1 By n,=M Ny =

or a constraint on the availability of a certain fraction of the popula-
tion:

T
n,=.9M l,“u

A
In applying the algorithm it is necessary to have upper bounds
for the decision variables. Certainly an upper bound for both 2 and

c is M+y (ample server case). To get an upper bound for y would

D
require some knowledge of the particular application, for example, a
budget limit or a manufacturing or supply limit.

The algorithm is based on representing the values of the decision
variables in a single binary vector (a vector whose elements are either

zero or one). Suppose we had a population of ten items and knew from

budget considerations we couid afford at most five spares. Then an upper

- 14 -
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bound of fifteen would be adequate and four bits (binary variables) would
be adequate for describing each variable. Thus the L~B algorithm would

work with a twelve bit vector, which might be arranged as follows: 1

( ! | ) . |

y s} p

Hence in this case the vector (0010 | 0010 |} 0011) , which has value

9 5 0

27+ 2 + 21 + 2° = 547 , represents the solution y =2, ¢, = 2,

B

¢y = 3 . The algorithm uses the binary vector whose value is 547 in
determining which portions of the solution space to eliminate. For
example, in the problem represented by (1) and (2), if the preceding
vector cannot satisfy the constraints, no vector with value less than it
can either, and hence all solutions represented by vectors of value less
than 547 are eliminated from consideration.

It is not necessary to partition the vector into groups repre-
genting each decision variable; v, Cps and p bits can be intermixed.
For example, we could use the ordering

U4 CBa> Spav Y30 Cp3> p3s Y20 20 “p2> Y1 Sp1v ©p1)

where Yi» Spys and c¢ represent the ith bit of y, ¢ , and ¢

Di B D’
respectively. 1f this ordering were used, the vector with value 547
shown above would represent the solution y = 0010 = 2 cg = 0001 =1 ,
€y = 1001 = 9 . Which ordering is most efficient to use depends on the
problem and can only be determined with some experimentation. The

reader {s referred to Lawler and Bell (op. cit.) for a detailed descrip-

tion of the algorithm and further discussion.

- 15 -
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7. SAMPLE RESULTS

The following problem was run on an IBM 4341 using Buzen's algo-
rithm to calculate the normalizing constant needed to yield the joint
probabilities p(nU,nB,nD) , and using the L-B algorithm to find the
optimal solution:

Minimize Z = 20y + 8cB + 10cD

Mty
subject to ) P 2.9 (A))
n = 1
n =M U
U
T
p. > .98 (A,)
n=.9M 0 2

The parameters were set as follows:

a=0.5, B=20.5, Wy < 1, Mg = My = 5 .

The upper bound used on all variables was 2M and cases with M = 5,
10, 20, and 30 were solved. Both constraints were used, except for the
case of M = 30 , where only (Al) was imposed. The results are given in
Table 1. Tour diiferent orderings were used and the results for the best
two are shown in Table 1, with ordering #1 being (..., Yi» ©gi* pi’
Yi-1* “pi-1’ pi-1’ ...) and ordering #2 being (..., Yis Yy_q» *oo»
€gi* Smi-1® **°* pi’ pi-1’ ...) . Given in the table are both the CPU
running times in seconds and the number of times Buzen's algorithm was
required (number of times the probabilities had to be calculated).

Both the L-B and Buzen algorithms appear to be quite efficient.
The most demanding of the problems run was the case M = 30 , both be-~

cause it has the largest population size and because it imposes only onc

constraint, causing the L-B algorithm to enumerate more solutions than

- 16 -~
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if both constraints had been invoked, Even so, the problem took only

slightly over ten seconds to solve.

TABLE 1

SAMPLE RESULTS

M ok ok - 2% A A Ordering 1 Ordering 2

B D 1 2 Cpry # CPU #
5 2 2 3 96 .938 .982 1.45 41 0.83 25
10 3 3 5 154 .926 .988 2.97 64 1.35 38
20 4 G 3 252 .907 .989 -~ - 2,55 66
30 6 8 11 348 .904 o -~ - 10,11 137
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APPENDIX

PROOF THAT .'.B(LB + 1) /‘n(‘n)

Even though it is intuitively obvious that if one increases the
number of servers, congestion decreases, so that it is certainly logical
that ZB(cB + 1) 1is stochastically smaller than ZB(CB) , i1t is not
trivial to prove. We proceed as follows, using Equation (7).

Consider the ratio P{ZB(cB) =n} / P{Zg(cB) =n - 1} , which we

shall call R(cB,n) . From Equation (7),

B
o l1<n S’CB
R(cB,n) = . (Al)
*B
= c, <n<M+y
B
It i1s clear that
R(CB,n) > R(cB +1, n) n=1,2,...,My . (A2)
This also implies that
P{ZB(CB) = i} P{ZB(CB +1) = i}

PlZcp =11 = Pl e, v D =37  0sisisiy @)

i

(1 J

since n=i+l R(cB,n) > nn=i+1 R(cB + 1, n) , and hence
3 3

1/ nn-1+1 R(cB,n) <1/ I . it R(cB +1,n) .

From (A3) we can easily obtain

%P{Z(c)=i} P{Zp(c, + 1) = i}
iz BB 120 BB
Plzglcy) = 37 = "Rzl + ) = 37

which implies, when taking reciprocals,
P{Zgleg) =3 | 25(cp) < 3} > P{Zgleg + 1) = 3 | Zpey +1) < 3},

which in turn implies, by subtracting both sides from one,

e

-~ 18 -
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Frgtep € 171 1 2y0ep) + 1+ Plzgtegd) < o1 | bceen < 1
LSl sMy.,
Now
Plzgley) < 3-1} = Plzy(cy) 5 3-1 | Zg(cg) < My}
Mty
- 123 Plzgleg) < 1-1 | zp(ep) < 1)
Mty
< i]jj P{zglegtl) < -1 | zp(ept1) < 1)
= PlZy(cg+l) < j-11 .
Hence,
P{z (cy) > 3} > P{zg(cptl) 2 1} . Q.E.D.

Ordering the ratios as in (A2) actually is a sufficient condition

in general for stochastic ordering [see WHITT (1980)].

- 19 -
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